A Generalized Polynomial Chaos - Based Method for Efficient Bayesian Calibration of Uncertain Computational Models

نویسنده

  • Han-Lim Choi
چکیده

This paper addresses the Bayesian calibration of dynamic models with parametric and structural uncertainties, in particular where the uncertain parameters are unknown/poorly known spatio-temporally varying subsystem models. Independent stationary Gaussian processes with uncertain hyper-parameters describe uncertainties of the model structure and parameters while Karhunnen-Loeve expansion is adopted to spectrally represent these Gaussian processes. The Karhunnen-Loeve expansion of a prior Gaussian process is projected on a generalized Polynomial Chaos basis, whereas intrusive Galerkin projection is utilized to calculate the associated coefficients of the simulator output. Bayesian inference is used to update the prior probability distribution of the generalized Polynomial Chaos basis, which along with the chaos expansion coefficients represent the posterior probability distribution. Parameters of the posterior distribution are identified that quantify credibility of the simulator model. The proposed method is demonstrated for calibration of a simulator of quasi-one-dimensional flow through a divergent nozzle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Bi-orthogonal Field Equation Approach for Efficient Bayesian Calibration of Large-Scale Systems

This paper proposes a novel computationally efficient dynamic bi-orthogonality based approach for calibration of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on a decomposition of the solution into mean and a random field using a generic Karhunnen-Loeve expansion. The random field is represented as a convolution of separable...

متن کامل

A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I: Theoretical Approach

This is the first part of a two-part article. A new computational approach for parameter estimation is proposed based on the application of the polynomial chaos theory. The polynomial chaos method has been shown to be considerably more efficient than Monte Carlo in the simulation of systems with a small number of uncertain parameters. In the new approach presented in this paper, the maximum lik...

متن کامل

Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters

Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo approaches for quantifying the effects of such uncertainties on the system response. This work uses the polynomial chaos framework to develop new methodologies for the simulation, parameter estimation, and control of mechanical sys...

متن کامل

Parameter Estimation for Mechanical Systems via an Explicit Representation of Uncertainty

Purpose – To propose a new computational approach for parameter estimation in the Bayesian framework. Aposteriori PDFs are obtained using the polynomial chaos theory for propagating uncertainties through system dynamics. The new method has the advantage of being able to deal with large parametric uncertainties, non-Gaussian probability densities, and nonlinear dynamics. Design/methodology/appro...

متن کامل

E-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring

Introduction      This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012